Title Image

Sustainability

helium non-renewable resource blog feature image. AI-generated conceptual image of two little girls planting a seedling amidst a field of flowers.

Helium – Why this non-renewable resource matters

Estimated reading time: 14 minutes

Quick summary: This article explores the critical issue of helium scarcity and its impact on medical imaging. Helium is a non-renewable resource essential for cooling the superconducting magnets in magnetic resonance imaging systems. However, limited production, growing demand, and inefficient usage drive up costs and environmental concerns. We look at alternative solutions such as recondensing systems and dry magnet technology, emphasising the need for sustainable innovations in healthcare.


World Environment Day 2024: We are Generation Restoration

World Environment Day 2024: We are Generation Restoration. AI-generated conceptual image of a mother and child planting a seedling in a world impacted by deforestation.

Welcome to the second part of our series on sustainability in medical imaging. The first article centred around Earth Day 2024 and its focus on “Planet vs Plastics”.

The timing of this piece could not be better as we now reflect on World Environment Day on 5th June 2024; every day, it is becoming more crucial to consider the environmental impact and sustainability of healthcare technologies.

The theme for 2024’s World Environment Day is “We are Generation Restoration”. Although it aims to spotlight land restoration, desertification and drought resilience, the theme is also relevant to other non-renewable resources, such as helium. The organisers have made this abundantly clear with their slogan: “We cannot turn back time, but we can grow forests, revive water sources, and bring back soils. We are the generation that can make peace with land.”

The environmental impact of helium extraction, purification and usage is considerable. The extraction process involves large-scale geological operations because the only commercially viable helium on earth is in underground natural gas sources. These processes disturb natural habitats and contribute to desertification.

Additionally, the transition from coal-powered energy generation to natural gas has led to increased usage of this resource alongside the expansion of renewable energy generation. Thus, reducing helium consumption and conserving helium resources will undoubtedly contribute to our efforts to “make peace with the land”.

This article will delve into the issues of helium supply, a significant medical imaging issue, and explore sustainable solutions to mitigate its impact.

What is helium? The element you didn’t know you needed

What is Helium? Blog Banner – AI-generated conceptual image of pink and blue atoms.

Helium, the second most abundant element in the universe, is primarily found on Earth in underground natural gas deposits. As a noble gas, helium possesses a set of unique chemical and physical properties, including:

  • low density (i.e. it is lighter than air)
  • low boiling point
  • non-reactive to other elements.

Perhaps more well-known for its association with party balloons, helium plays a much more critical role in modern technology than is generally realised. Its unique attributes make helium invaluable in many industries, particularly scientific research and healthcare.

Helium is instrumental in many everyday applications and products we rely on, such as the gas mixture used in scuba tanks, arc welding and computer hard drives. Helium is necessary for enabling rocket fuel flow and is vital for manufacturing semiconductors. It is also used to cool superconducting magnets used in particle accelerators. Helium cools the superconducting magnets used in Magnetic Resonance Imaging (MRI) systems and Nuclear Magnetic Resonance (NMR) systems, enabling biochemists to determine the structure of complex molecules.

Although the biggest consumer of helium globally is NASA, consuming approximately 20 million cubic meters of helium for rocket propulsion annually (Ijaz, 2023)1, the medical industry plays a significant role. The element is so critical in medical imaging that medical research and magnetic resonance imaging account for approximately 30 per cent of global helium consumption annually (Ólafsdóttir & Sverdrup, 2020)2.

Helium is a non-renewable resource formed through the radioactive decay of uranium and thorium over billions of years in the Earth’s crust. Troublingly, once released into the atmosphere, helium molecules are so light that they escape Earth’s gravity and are lost into space forever.

Despite occurring naturally, helium gas is only accessible via extraction from underground natural gas deposits. For it to be feasible to extract, there must be at least 0.3 per cent of helium (by volume) in the natural gas reserves being mined, so there are limited usable sources on the planet (Opfer & Bos, 2023)3. Once extracted, it must be transitioned from gas to liquid for transportation and many applications.

Why helium is crucial in medical imaging

Why Helium is crucial in medical imaging Blog Banner – AI-generated conceptual image of pink and blue spheres that look like bubbles or atoms.

MRI relies on magnetic fields to produce detailed images of the body’s internal structures suitable for clinical diagnosis. All high-field MRI systems utilise superconducting magnets to generate the magnetic field strength required to produce the gold-standard image quality required for many clinical diagnostic applications. As mentioned, helium primarily cools the superconducting magnets within these high-field MRI systems.

The magnets must maintain a superconducting state to produce the strong and stable magnetic field essential for diagnostic imaging. Without adequate cooling, the magnets would lose their superconducting properties, and the scanner would cease to operate.

Helium is unique because it has a very low boiling point (4.2 kelvin at atmospheric pressure), meaning it doesn’t become solid (freeze) at low temperatures. It makes liquid helium an ideal cooling source for superconducting magnets, which must typically be maintained at these very low temperatures to remain in the superconducting state.

However, several issues impact the use of helium in technology today. In short, these are:

  • Increasing scarcity
  • The environmental impact of production
  • Rising costs

Helium is a non-renewable resource and becoming increasingly scarce

Helium is a finite resource and becoming increasingly scarce blog banner—AI-generated conceptual image of an hourglass surrounded by gas vapour with a pink and blue background.

Despite its abundance in the universe, helium is a finite element becoming increasingly scarce on Earth. Its limited supply and the growing demand driven by new technologies and medical advances are contributing factors (Provornaya, Filimonova, Eder, Nemov, & Zemnukhova, 2022)4. The extraction and purification process is costly and complex, further complicating matters.

Additionally, with most of the Earth’s helium reserves located in the underground natural gas fields of the United States, Qatar, Algeria and Russia (U.S. Geological Survey, 2024)5, production and distribution can be vulnerable to volatility in the global political climate. In the past, strategic reserves stored by governments have been used to mitigate price fluctuations and guarantee availability for strategic users.

Over the past five years, the volume of helium extraction has remained steady, yet its consumption has dramatically increased (U.S. Geological Survey, 2024). Researchers have predicted that with the current rate of helium depletion, the world could face severe shortages as early as 2043 (Puiu, 2013)6 and possibly run out entirely by 2090 without intervention (Ólafsdóttir & Sverdrup, 2020). Although researchers seem to disagree with the varying projected rates of depletion, it is clear that helium is becoming scarcer over time (Provornaya, Filimonova, Eder, Nemov, & Zemnukhova, 2022).

Encouragingly, substitutes for helium in some applications do exist. Alternative cooling methods for superconducting magnets are also available. More on this later.

Depleting helium reserves worsened by wastage

Depleting helium reserves worsened by wastage – AI-generated conceptual image of earth surrounded by flames and vapour showing helium being lost from the atmosphere. Pinks and blues.

Helium wastage is another concern affecting the resource’s depleting reserves. Inefficiencies in producing and distributing helium gas contribute to the loss of significant volumes. These losses, including evaporation during storage and transportation, further exacerbate helium scarcity and drive up prices.

Another practice, gas flaring also results in the loss of significant volumes of natural gas containing potentially accessible helium (World Bank, 2024)7.

The environmental impact of helium production

The environmental impact of helium production banner with AI-generated conceptual image of an oil rig releasing greenhouse gases and pollution into the atmosphere. Pinks and blues.

Even if we ignore fears about helium scarcity, we must not overlook the significant environmental issues that helium production contributes to. Although the environmental impacts of gas and oil mining occur irrespective of helium extraction, the additional processing involved in extracting and purifying helium is energy-intensive.

This extraction process, called “fractional distillation”, separates the helium from hydrocarbons and nitrogenous compounds in natural gas to produce crude helium (Serra Leal, Incer-Valverde, & Morosuk, 2023)8. Following this, further refinements and purification are needed to create “Grade-A” helium and convert it to the liquid required by most medical and commercial applications (Grynia & Griffin, 2016)9.

The additional energy required for these extraction and purification processes is a problematic contributor to environmental concerns, in addition to the greenhouse gases already produced during the drilling of natural gas (Serra Leal, Incer-Valverde, & Morosuk, 2023).

Furthermore, as helium becomes more challenging to access, the incentive to carry out more aggressive extraction operations increases, further exacerbating the environmental damage.

Rising cost of helium

The rising cost of helium banner with AI-generated conceptual image of red helium balloons with dollar signs rising into the air in front of a hospital.

True to the well-known laws of supply and demand, it makes sense that the growing scarcity of helium also contributes to its rising cost. Although there may be relief in the coming years, with Qatar and Russia planning to bring new helium plants online, the current trend is that helium costs will continue to skyrocket. The recent sale of the U.S. government helium stockpile has also added pressure to its vulnerable prices.

Presently, the purchase price of helium is the most expensive the world has ever seen, doubling in price from USD$7.57 per cubic meter in 2019 to USD$14 in 2023 (U.S. Geological Survey, 2024). As a result, many research facilities (such as those that use it for NMR spectroscopy) record it as their most significant expense (Nordrum, 2024)10.

An average whole-body MRI system contains 1500-2000 litres of liquid helium and loses 3 to 4 per cent monthly in boil-off (Lopez, 2024)11. In systems with larger magnets that produce higher magnetic fields, this increases. A small to midsize research facility or hospital can already spend an average of US$20,000 annually (Block Imaging, 2023)12 to replenish their helium supplies at current market rates, and this is on the rise.

The impact of helium scarcity and rising costs on medical imaging

The impact of helium scarcity and rising costs on medical imaging production banner with AI-generated conceptual image of balloons filled with cash rising into the sky in front of a hospital.

Across many industries, today’s technologies that rely on helium, including medical imaging and research, are at significant risk should it continue to dwindle. Moreover, given the aforementioned rising costs, the impact is such that we are already seeing researchers and hospitals rationing helium use and limiting the number of research projects.

In 2022, Harvard University laboratories suspended several research projects due to a 50 per cent reduction in helium supply (Herszenhorn, 2022)13. The outcome of this is slowed critical scientific progress and impacted careers, with some students unable to graduate pending the completion of their thesis studies.

Medical imaging and healthcare professionals have collectively expressed concerns that this may even translate to hospitals shutting down life-saving MRI systems. In a 2022 letter to the Bureau of Land Management to raise the alarm, the American Hospital Association spoke on behalf of its millions of members and affiliates. In it, they addressed the issue of access to helium reserves and its impact on their ability to provide vital medical services and care.

In a recent article, Mahadevappa Mahesh, professor of radiology at the Johns Hopkins School of Medicine Baltimore, outlined the facility’s plans to add additional MRI scanners to their facility. At the same time, voicing his concerns that the machines won’t be usable if helium runs out.

Mitigation and solutions: Helium substitutes and alternative technologies

Mitigation & solutions – helium substitutes and alternative technologies banner with AI-generated conceptual image of a bubble of gas amongst beautiful pink flowers in a natural environment with blue sky and sun.

So far, we’ve painted a fairly bleak picture of a world where helium scarcity and rising costs could slow medical advances, prevent the diagnoses of life-threatening conditions and threaten the environment. However, it isn’t all doom and gloom.

In recent years, the scientific community has embarked on a crusade to mitigate the impact of helium scarcity. There are solutions, and many of them are available right now. Some of these include:

Suitable alternatives and substitutes for helium

AI-generated conceptual image of earth floating above clouds surrounded by gaseous bubbles during a pink and blue sunset.

Helium can be substituted with other elements in certain circumstances. Scientists can use hydrogen in scenarios that require lighter-than-air applications and where flammability is not a concern. Deep-sea diving activities can safely use hydrogen, too. Another noble gas, argon, can also be used as a shield gas instead of helium for non-ferrous welding (U.S. Geological Survey, 2024); and every little bit helps.

However, helium’s unique properties mean no other substance can replace it in cryogenic applications, NMR and MRI because of the extreme cooling required for superconducting magnets. Its inert nature and low boil-off temperature can maintain temperatures as low as 4 Kelvin (-269.15°C). Most superconducting magnet systems require operating temperatures below 9 Kelvin; other cryogens, such as liquid nitrogen, cannot match this (Lopez, 2024). 

Is “helium-free” the way forward for MRI?

AI-generated conceptual image of a sign with an arrow pointing forward in a green rainforest environment.

MRI is a critical diagnostic tool for identifying life-threatening conditions such as strokes, tumours and infections, as well as traumatic musculoskeletal (MSK) injuries and fractures. The minimally invasive procedure, which utilises non-ionising radiation, provides high-quality images and contrast resolution detail in tissues not visible in alternatives such as X-rays and Computed Tomography (CT) (Awan, 2022)14.

Radiologists and physicians rely upon MRI so heavily that in 2021 alone, around 680 million MRI scans were performed globally (OECD, 2024)15.  Simply put, other modalities cannot replace MRI, so reducing its impact on the environment and helium reserves is essential.

With carbon footprint top-of-mind and focusing on future-proofing medical imaging advances, we have seen many researchers and manufacturers innovating more sustainable MRI solutions. Technologies that reduce or eliminate the need for helium are on the rise. Companies are prioritising advances like closed-system whole-body MRI scanners with limited or no helium boil-off and reduced energy consumption.

Groundbreaking advancements like “dry” superconducting magnets are key. These do not require liquid helium, thereby conserving the resource and reducing the environmental footprint associated with its use.

Advanced scanners designed for dedicated purposes, including high-field extremity MSK systems and AI-enhanced portable, ultra-low magnetic field machines, are also an area of focus. 

Our third and final article in this series on sustainability in medical device manufacturing will consider the nature of superconducting magnets and weigh up the environmental effects of keeping them functioning optimally for MRI.

We will also unpack Magnetica’s approach to mitigating the ecological consequences of medical imaging. The first step is our prototype 3T compact MRI system. It employs a novel design incorporating innovative features that address environmental challenges while providing an improved experience for patients and professionals.

We invite you to learn more about how Magnetica is embracing sustainability and contributing to a greener future in healthcare.

Learn more about Magnetica’s contribution to greener healthcare CTA banner.


References

  1. Ijaz, S. (2023, July 2023 13). Helium Reserves By Country and Biggest Helium Manufacturers. Retrieved June 1, 2024, from Yahoo Finance: https://finance.yahoo.com/news/helium-reserves-country-biggest-helium-031157836.html ↩︎
  2. Ólafsdóttir, A., & Sverdrup, H. (2020, May 19). Assessing the Past and Future Sustainability of Global Helium Resources, Extraction, Supply and Use, Using the Integrated Assessment Model WORLD7. Biophysical Economics and Sustainability, 5(6). doi:10.1007/s41247-020-00072-5 ↩︎
  3. Opfer, C., & Bos, S. (2023, October 18). A Helium Shortage! What If We Ran Out of Helium? Retrieved June 3, 2024, from How Stuff Works: https://science.howstuffworks.com/science-vs-myth/what-if/what-if-we-ran-out-helium.htm ↩︎
  4. Provornaya, I., Filimonova, I., Eder, L., Nemov, V., & Zemnukhova, E. (2022, June). Prospects for the global helium industry development. Energy Reports, 8(3), 110-115. doi:https://doi.org/10.1016/j.egyr.2022.01.087 ↩︎
  5. U.S. Geological Survey. (2024). Mineral commodity summaries 2024: U.S. Geological Survey. U.S. Geological Survey. doi:https://doi.org/10.3133/mcs2024 ↩︎
  6. Puiu, T. (2013, July 30). How we’re wasting all our precious helium. A call for recycling. Retrieved May 31, 2024, from ZME Science: https://www.zmescience.com/science/chemistry/wasting-helium-recycle-052543/ ↩︎
  7. World Bank. (2024). Gas Flaring Explained. Retrieved from The World Bank: https://www.worldbank.org/en/programs/gasflaringreduction/gas-flaring-explained ↩︎
  8. Serra Leal, J. S., Incer-Valverde, J., & Morosuk, T. (2023). Helium: Sources, Applications, Supply, and Demand. Gases, 3(4), 181-183. doi:https://doi.org/10.3390/gases3040013 ↩︎
  9. Grynia, E., & Griffin, P. J. (2016). Helium in Natural Gas – Occurrence and Production. The Journal of Natural Gas Engineering, 1(2), 163-215. doi:https://doi.org/10.7569/jnge.2016.692506 ↩︎
  10. Nordrum, A. (2024, February 25). The era of cheap helium is over—and that’s already causing problems. Retrieved June 4, 2024, from MIT Technology Review: https://www.technologyreview.com/2024/02/25/1088930/global-helium-market-semiconductors ↩︎
  11. Lopez, L. (2024). MRI Liquid Helium Wiki. Retrieved from Medical Imaging Source: https://www.medicalimagingsource.com/mri-liquid-helium ↩︎
  12. Block Imaging. (2023, April 27). How Much Will It Cost To Refill Helium In My MRI Machine? Retrieved from Block Imaging: https://www.blockimaging.com/blog/how-much-will-it-cost-to-refill-helium-in-my-mri-machine ↩︎
  13. Herszenhorn, M. J. (2022, June 24). Helium Shortage Forces Harvard Physics Labs to Shut Down Equipment, Suspend Projects. Retrieved May 30, 2024, from The Harvard Crimson: https://www.thecrimson.com/article/2022/6/24/helium-shortage-2022/ ↩︎
  14. Awan, O. (2022, November 10). Why The Global Helium Shortage May Be The World’s Next Medical Crisis. Retrieved May 29, 2024, from Forbes: https://www.forbes.com/sites/omerawan/2022/11/10/the-helium-crisis-how-it-will-affect-you-and-your-loved-ones/?sh=283fd5437ed1 ↩︎
  15. OECD. (2024). Magnetic resonance imaging (MRI) units. doi: 10.1787/1a72e7d1-en ↩︎


Be sure to follow our social media accounts to stay abreast of all our company activities and events:


Further reading

Earth Day 2024 Greener Healthcare Technology - blog feature image

Earth Day 2024: Looking Towards Greener Healthcare Technology

Length: 7-minute read.

Quick summary: This is the first in our series of articles examining the environmental impact of medical device manufacturing and the role that companies like Magnetica play in leading the way towards more sustainable medical technology.


Earth Day 2024: Planet vs Plastics

Earth Day 2024: Planet vs Plastics – AI-generated image of a sea turtle wearing a surgical mask surrounded by medical and plastic pollution.

Last week, the world celebrated its 54th annual Earth Day. Every year since 1970, on April 22nd, Earth Day shines a global spotlight on sustainability and the environmental impact humans have on our planet.  The idea was originally coined in Wisconsin by a small group of activists, and whilst Earth Day may have had humble beginnings, today, it inspires millions of people across the globe to think and act responsibly about environmental conservation.

Every year, the Earth Day organisers identify a theme, highlighting significant areas of concern affecting our planet. For Earth Day 2024, they selected “Planet vs Plastics.” The theme encompasses several pillars, focusing on the effects of plastics on the environment and human health.

Several issues need to be addressed when discussing plastics and our planet. We know that plastic production has devastating repercussions, including:

  • toxic emissions and spills contributing to issues related to global warming
  • pollution of waterways and ecosystems
  • threats to human health as plastics break down into easily inhaled and digested microplastics containing harmful toxins and chemicals
  • over-production of synthetic garments and clothing that inevitably end up in landfills.

As a stand-alone issue, it is widely accepted that plastic pollution has a tragic effect on the wildlife inhabiting ecosystems and waterways. For instance, as of 2018, more than 11.1 billion plastic particles were entangling the corals across 159 Asia-Pacific reefs, increasing alarmingly yearly[1].

We also know that more than 500 billion plastic bags were produced globally last year.[2]

The Medical Industry Embracing Eco-Friendly Technologies

You may wonder what plastic pollution has to do with the medical industry, particularly medical device manufacturing. According to a recent journal article, titled “Health care’s climate footprint: the health sector contribution and opportunities for action”, the healthcare sector accounts for 4.4 per cent of global net greenhouse emissions and toxic air pollutants, with 71 per cent derived from the supply chain and manufacturing. [3] These are alarming figures, with microplastics being one of four main considerations, as summarised below:

  1. The impact emissions and the ingestion of microplastics have on human health.
  2. The threat that climate change poses to our quality of life and the sustainability of our planet.
  3. How the manufacturing and decontamination of medical devices, PPE, consumables, and single-use plastics contribute to pollution.
  4. The rate at which the medical industry consumes non-renewable resources to manufacture, power and operate equipment and devices.

Reflecting on these issues, it becomes clear that the medical industry is a crucial effector and should be pivotal in leading the way towards global sustainability.  Since the industry is at the forefront of innovation and technology, prioritising environmental impact and eco-friendly solutions in our manufacturing processes makes sense. Sustainability is no longer a buzzword; today, it is essential.

Earth Day 2024: It’s Not Just About Plastics

Although this year’s Earth Day theme focused on the detrimental effects of plastics and microplastics, it is important to point out that our planet is threatened by many and varied impacts.

The Intergovernmental Panel on Climate Change and the World Health Organisation recognise this. They release an annual report examining the multitude of issues contributing to climate change and providing recommendations for pathways to global mitigation for policymakers worldwide. In the most recent report, a serious call to action addressed the healthcare sector’s impact on ecology. It identified several opportunities to reduce healthcare’s carbon footprint, including:

  • more efficient infrastructure
  • harnessing renewable fuel and energy sources
  • reducing the use of non-renewable energy sources (for instance, helium) and energy consumption
  • utilising more sustainable supply-chain practices[4].

Sustainable Practices in Medical Imaging

Conceptual image of a superconducting magnet in a lush green, outdoor environment.

A recent journal article mapped out a typical lifecycle of medical devices and equipment, from design and manufacture to disposal, highlighting critical areas and challenges the healthcare sector faces. Overcoming contamination and infection control is complicated, leading to the industry’s prolific use of single-use and consumable items. These are often made of plastic and disposed of in ways that end their lifecycle in landfills – the issue highlighted by this year’s Earth Day theme. The article emphasises the need for ecological considerations at every stage of the manufacturing process, including the end-user[5]

Researchers are increasingly considering sustainability practices in radiology, recognising medical imaging technologies’ contributions to global emissions. One such example is this 2023 article, which attributes four MRI and three CT scanners to consuming 4 per cent of one hospital’s total energy consumption and reveals that a single full-body MRI scanner, averaging 4141 patients annually, expends the same energy as 25.8 four-person households[6].

In addition, most MRI systems consume energy to constantly cool the helium required for their high-powered magnets, even when the system is not being proactively used to image patients. Here, we realise two substantial environmental issues affecting MRI systems:

1. High energy consumption

2. The use of helium, a completely non-renewable resource that is becoming increasingly scarce. In fact, by the end of 2021, the MRI industry represented a 32 per cent share of all helium consumed each year globally [7].

In its report, the IPCC identified an opportunity for the healthcare sector to reduce its environmental impact by addressing these concerns.

Encouragingly, a solution to both issues does exist – in the form of MRI systems that harness cryogen-free superconducting magnet technologies.

Addressing the Environmental Impact of MRI

Advanced dry magnet technology eliminates the need for liquid helium, conserving the precious, non-renewable resource. It also reduces energy consumption  (demonstrated by the Philips BlueSeal magnet in their whole-body systems) and the environmental impact of helium extraction and usage. In doing so, these systems exemplify how technology can be both high-performing and environmentally conscious.

In future articles in this series, we will examine the depth of helium-reliant technologies’ impact on sustainability in medical imaging and MRI and the excessive energy consumption that radiology equipment contributes to. We will consider why incorporating dry (liquid helium-free) superconducting magnets into MRI systems addresses these issues and could improve sustainability in the medical imaging sector.

Liquid helium-free magnet technology is one step toward driving medical equipment manufacturers to meet environmental standards. By embracing such technologies, the healthcare sector can play a pivotal role in mitigating its environmental impact, setting a precedent for other industries, and bringing about the catalyst for change that movements such as Earth Day promote.

Learn more about Magnetica’s 3T MR system that harnesses liquid helium-free technology here.

CTA image – discover Magnetica’s 3T MR system that harnesses liquid helium-free technology.


References:

  1. Earthday.org. (2022, March 5). Fact Sheet: Plastics in the Ocean. Fact Sheet: Plastics in the Ocean – Earth Day ↩︎
  2. Earthday.org. (2024). Planet vs. Plastics Global Theme for Earth Day 2024. Planet vs. Plastics – Earth Day ↩︎
  3. Karliner, J., Slotterback, S., Boyd, R., Ashby, B., Steele, K., & Wang, J. (2020). Health care’s climate footprint: the health sector contribution and opportunities for action. European Journal of Public HealthVolume 30 (Supplement_5). https://doi.org/10.1093/eurpub/ckaa165.843 ↩︎
  4. IPCC. (2023). Summary for Policymakers. In: Climate Change 2023: Synthesis report. Contribution of Working Groups, I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. (Core Writing Team, H. Lee, & J. Romero, Eds.; pp. 35–115). IPCC, Geneva, Switzerland, pp. 1-34, doi: 10.59327/IPCC/AR6-9789291691647.001. https://doi.org/10.59327/IPCC/AR6-9789291691647 ↩︎
  5. Hinrichs, S., Diehl, J. C., Hunfeld, N., & Van Raaij, E. M. (2022). Towards sustainability for medical devices and consumables: The radical and incremental challenges in the technology ecosystem. Journal of Health Services Research & Policy, 27(4), 253–254. https://doi.org/10.1177/13558196221110416 ↩︎
  6. Mariampillai, J., Rockall, A., Manuellian, C., Cartwright, S., Taylor, S., Deng, M., & Sheard, S. (2023). The green and sustainable radiology department. Die grüne und nachhaltige Radiologieabteilung. Radiologie (Heidelberg, Germany)63(Suppl 2), 21–26. https://doi.org/10.1007/s00117-023-01189-6 ↩︎
  7. Statisitca.com. (2023, October 30). Distribution of helium consumption worldwide as of 2021, by end use. Helium consumption distribution worldwide by end use 2021 | Statista ↩︎

Be sure to follow our social media accounts to stay abreast of all our company activities and events: